fbpx

Bridging Gap

Bridging Gap

Integrated Marketing Communication Agency.

We craft beautifully useful marketing and digital products that grow businesses.

T (917) 720 3126
Email: gaurav.sodhi@bridginggap.in

Bridging gap (B.Gap Pvt. Ltd.)
244 Fifth Avenue, Manhattan New York, NY, US 10001

Get in touch: +91-983-383-0474
  • MY CART
    No products in cart.
  • About us
  • Voice Your Business
    • India
    • USA
  • Services
    • Web & Mobile Development
    • SEO Services
    • Graphic Design
    • Marketing
      • Experiential Marketing (Events)
      • Email Marketing
      • Social Media Marketing
      • Hotel Marketing
    • Social Media
    • Brand Building
  • Portfolio
    • Strategic Creations
  • Beyond the Bridge
  • Contact us
Enquiry
0
Wednesday, 09 February 2022 / Published in Uncategorized

Using the universe's coldest material to measure the world's tiniest magnetic fields – Science Daily

Using atoms only a few billionths of a degree above absolute zero, a team of researchers from ICFO and Aalto University have detected magnetic signals undetectable by any other existing sensor technology. Magnetometers measure the direction, strength or relative changes of magnetic fields, at a specific point in space and time. Employed in many research areas, magnetometers can help doctors to see the brain through medical imaging, or archaeologists to reveal underground treasures without excavating the ground.
Some magnetic fields of great interest, for example those produced by the brain, are extraordinarily weak, a billion times weaker than the field of the Earth, and therefore, extremely sensitive magnetometers are required to detect these weak fields. Many exotic technologies have been invented for this purpose, including superconducting devices and laser-probed atomic vapors. Even the impurities that give some diamonds their color have been used as magnetic sensors. Until now, however, the sensitivity of all of these technologies has stalled at about the same level, meaning that some magnetic signals were simply too faint to detect.
Physics describes this limitation with a quantity called the energy resolution per bandwidth, written ER, a number that combines the spatial resolution, the duration of the measurement, and the size of the sensed area. In about 1980, superconducting magnetic sensors reached the level ER = ħ and since then, no sensor has been able to do better (ħ, pronounced “h bar,” is the fundamental Planck’s constant, also called the quantum of action).
Surpassing the energy resolution limit
In a study published at PNAS, ICFO researchers Silvana Palacios, Pau Gómez, Simon Coop and Chiara Mazzinghi, led by ICREA Prof. Morgan Mitchell, in collaboration with Roberto Zamora from Aalto University, report a novel magnetometer that for the first time achieves an energy resolution per energy bandwidth that goes far beyond this limit.
In the study, the team used a single-domain Bose-Einstein condensate to create this exotic sensor. This condensate was made of rubidium atoms, cooled to nano-Kelvin temperatures by evaporative cooling in a near-perfect vacuum, and held against gravity by an optical trap. At these ultracold temperatures, the atoms form a magnetic superfluid that responds to magnetic fields in the same way as an ordinary compass needle, but can reorient itself with zero friction or viscosity. Because of this, a truly tiny magnetic field can cause the condensate to reorient, making the tiny field detectable. The researchers showed that their Bose condensate magnetometer has achieves an energy resolution per bandwidth of ER= 0.075 ħ, 17 times better than any previous technology.
A qualitative advantage
With these results, the team confirms that their sensor is capable of detecting previously undetectable fields. This sensitivity could be improved further with a better readout technique, or by using Bose-Einstein condensates made of other atoms. The Bose-Einstein condensate magnetometer may be directly useful in studying the physical properties of materials and in hunting for the dark matter of the Universe.
Most importantly, the finding shows that ħ is not an unpassable limit, and this opens the door to other extremely-sensitive magnetometers for many applications. This breakthrough is interesting for neuroscience and biomedicine, where detection of extremely weak, brief and localized magnetic fields could enable the study of new aspects of brain function.
Story Source:
Materials provided by ICFO-The Institute of Photonic Sciences. Note: Content may be edited for style and length.
Journal Reference:
Cite This Page:
Visit New Scientist for more global science stories >>>
Get the latest science news with ScienceDaily’s free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:
Keep up to date with the latest news from ScienceDaily via social networks:
Tell us what you think of ScienceDaily — we welcome both positive and negative comments. Have any problems using the site? Questions?

source

  • Tweet

What you can read next

Small business checklist: 15 ways to maximize your company's cash before Dec. 31 – USA TODAY
Portland man pleads guilty to using bogus business in COVID relief scheme, prosecutors say – OregonLive
BUCKS COUNTY POLICE REPORTS: In Lower Makefield, police investigate fraud reports, retail thefts and a burglary – The Reporter

Recent Posts

  • SEO service in Bandra

    Beyond Keywords: How Search Intent is Shaping SEO Strategies in 2025

    In the dynamic realm of digital marketing, unde...
  • Best Hotel Marketing Agency

    OTA vs Direct bookings- How Hotels can achieve Maximum Revenue ?

    Best Hotel Marketing Agency...
  • Google Vs SEO

    Google Ads vs. SEO – Which Is Better? Get Expert Strategy from Bridging Gap, Mumbai

    In the fast-paced world of digital marketing, b...
  • best digital marketing agency in Delhi

    Branding Beyond the Logo: The Emotional Triggers That Make Customers Buy

    Introduction to Branding Branding is much more ...
  • Bridging Gap: 40% Revenue Increase for a Resort Through Smart OTA Strategies

    The hospitality industry is fiercely competitiv...

Archives

  • February 2025
  • January 2025
  • December 2024
  • May 2024
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • June 2017

Categories

  • Branding
  • Marketing
  • News
  • SEO
  • Social Media
  • Uncategorized
  • Web Design

Meta

  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org
Company
  • About us
  • Voice Your Business
  • Services
  • Portfolio
  • Beyond the Bridge
  • Contact us
Social
  • Instagram
  • Facebook
  • Twitter
Support
  • FAQ
  • Terms
  • Privacy

Bridging Gap

Call USA :+1-347-587-8585

Call IND: +91-983-383-0474

info@bridginggap.in

© 2025 All rights Reserved @Bridging Gap.

TOP